Практическое занятие №6.

Задачи для самостоятельной работы студента

Решение задач по темам: Нахождение производных функций. Приложения производной.

1. Найти производные следующих функций:

a)
$$y = 5x^4 - 3\sqrt[7]{x^3} + \frac{7}{x^5} + 4$$
; b) $y = \frac{2}{\sqrt{x}} - \frac{3}{\sqrt[3]{x}}$ c) $y = \frac{x^4 + 1}{x^4 - 1}$; d) $y = \frac{1 + \ln x}{x}$

b)
$$y = \frac{2}{\sqrt{x}} - \frac{3}{\sqrt[3]{x}}$$

c)
$$y = \frac{x^4 + 1}{x^4 - 1}$$
;

$$d) y = \frac{1 + \ln x}{x}$$

e)
$$y = \frac{\sin^2 x}{x^3 + 1}$$

e)
$$y = \frac{\sin^2 x}{x^3 + 1}$$
 f) $y = \sqrt{\frac{\cos^2 x + 1}{\sin 2x + 1}}$ g) $y = (x^5 + 3x - 1)^4$; h) $y = \sqrt[3]{x^4 + \sin^4 x}$

g)
$$y = (x^5 + 3x - 1)^4$$

h)
$$y = \sqrt[3]{x^4 + \sin^4 x}$$

k)
$$y = (2^{x^4} - tg^4 x)^3$$
 m) $y = e^{arctg\sqrt{1+x^2}}$ n) $y = 3^{tg^3 5x}$ o) $y = \sqrt[3]{(4+3x)^2}$

$$m) v = e^{arctg\sqrt{1+x^2}}$$

n)
$$y = 3^{tg^3 5x}$$

o)
$$y = \sqrt[3]{(4+3x)^2}$$

q)
$$y = \frac{1}{(1-x^2)^5}$$

$$r) y = \ln(x^2 + 2x)$$

$$s) y = \cos \ln(1 - x^2)$$

q)
$$y = \frac{1}{(1-x^2)^5}$$
 r) $y = \ln(x^2 + 2x)$ s) $y = \cos\ln(1-x^2)$ t) $y = \ln\frac{1+\sqrt{x^2+1}}{x}$

u)
$$y = \sqrt[5]{x + x\sqrt[3]{x}}$$

$$y = e^x tg 4x$$

$$w) \quad y = x^2 \cos x$$

u)
$$y = \sqrt[5]{x + x\sqrt[3]{x}}$$
 v) $y = e^x tg 4x$; w) $y = x^2 \cos x$ z) $y = e^x \sqrt{1 - e^{2x}} + \arcsin e^x$

2. Используя логарифмическую производную найти производные следующих функций:

a)
$$y = (\sin x)^x$$

b)
$$y = x^{x^2}$$

c)
$$y = (\cos x)^{\frac{1}{x}}$$

$$d) y = (\sin 3x)^{\cos 5x}$$

a)
$$y = (\sin x)^x$$
 b) $y = x^{x^2}$ c) $y = (\cos x)^{\frac{1}{x}}$ d) $y = (\sin 3x)^{\cos 5x}$ e) $y = (x^3 + 1)^{\log 2x}$.

3. Составить уравнения касательной и нормали к кривой $y = x^3 + 2x - 2$ в точке с абсциссой $x_0 = 1$.

4. Найти производную второго порядка y'' для функций

a)
$$y = (1 + 4x^2) arctg 2x$$

b)
$$y = (x^2 + 1) \ln(1 + x^2)$$

5. Найти значения производных любого порядка функции $y = x^3 - 5x^2 + 7x - 2$ в точке x = 2.

6. Удовлетворяет ли функция $y = C_1 e^{2x} + C_2 e^{3x}$ при любых постоянных C_1 и C_2 уравнению v'' - 5v' + 6v = 0.

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

Задачи из Лекции №6 (ФИТ)

Пример 1. Для функции определить левую производную f'(x) и правую производную

$$f'_+(x)$$
, если $f(x) = \begin{cases} \frac{x}{1+e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

Пример 2. Найти значение производной функции y = |x| в точке x=0.

<u>Пример 3.</u> Найти производную функции $y = (\sin 2x)^{x^3}$

Пример 4. Для функции $f(x) = x^3 - 2x + 1$ определить: 1) $\Delta f(1)$; 2) df(1); и сравнить их, если:

a) $\Delta x = 1$, 6) $\Delta x = 0.1$, B) $\Delta x = 0.01$

Пример 5. Найти производную функции $y = \left(x^2 + \frac{1}{x}\right)^3$

Пример 6. Найти производную функции $y = \sqrt{\sin(\ln x)}$

Пример 7. Найдем производную третьего порядка функции $y = 3x^3 + 1$.

Пример 8. Найдем производную сотого порядка функции $y = x \cos x$

ЗАДАЧИ С РЕШЕНИЯМИ

Примеры:

Пользуясь определением, найти производную функции y = f(x):

- 1) $y = 3x^2$;
- **2)** $y = \sin x$.
- \bigcirc 1) Придадим аргументу x приращение Δx . Тогда соответствующее приращение Δy функции будет иметь вид

$$\Delta y = f(x + \Delta x) - f(x) = 3(x + \Delta x)^2 - 3x^2 =$$

$$= 3(x^2 + 2x\Delta x + (\Delta x)^2 - x^2) = 3\Delta x(2x + \Delta x).$$

Отсюда находим предел отношения $\frac{\Delta y}{\Delta x}$ в точке x при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{3\Delta x (2x + \Delta x)}{\Delta x} = 3 \lim_{\Delta x \to 0} (2x + \Delta x) = 3 \cdot 2x = 6x.$$

Таким образом, $y' = (3x^2)' = 6x$.

2) Найдем приращение Δy функции, соответствующее приращению Δx аргумента, используя формулу разности синусов:

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right).$$

Отсюда

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2 \sin \frac{\Delta x}{2} \cdot \cos \left(x + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\left(\frac{\Delta x}{2}\right)} \cdot \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2}\right) = \cos x.$$

В последнем равенстве мы воспользовались первым замечательным пределом и непрерывностью $\cos x$. Таким образом, $y' = (\sin x)' = \cos x$.

Примеры:

Пользуясь основными правилами дифференцирования, найти f'(x), если:

1)
$$f(x) = \frac{9}{\sqrt[3]{r^2}} - 5^{x+1}$$
;

2)
$$f(x) = (x^4 - x) \cdot (3 \operatorname{tg} x - 1)$$
.

1) Преобразуем функцию к виду

$$f(x) = 9 \cdot x^{-2/3} - 5 \cdot 5^x.$$

Отсюда, используя таблицу производных, получим

$$f'(x) = (9 \cdot x^{-2/3} - 5 \cdot 5^x)' = (9 \cdot x^{-2/3})' - (5 \cdot 5^x)' =$$

$$= 9 \cdot (x^{-2/3})' - 5 \cdot (5^x)' = 9 \cdot \left(-\frac{2}{3}\right) \cdot x^{-\frac{2}{3}-1} - 5 \cdot 5^x \ln 5 =$$

$$= -6x^{-5/3} - 5^{x+1} \ln 5.$$

2) Воспользуемся формулой для производной произведения:

$$f'(x) = [(x^4 - x)(3 \operatorname{tg} x - 1)]' =$$

$$= (x^4 - x)'(3 \operatorname{tg} x - 1) + (x^4 - x)(3 \operatorname{tg} x - 1)' =$$

$$= (4x^3 - 1)(3 \operatorname{tg} x - 1) + (x^4 - x) \cdot \frac{3}{\cos^2 x}. \quad \blacksquare$$

Примеры:

5. Вычислить производную функции:

a)
$$y = \frac{x^2 \sin x}{\ln x}$$
 $(x > 0, x \ne 1)$; 6) $y = \cos(2^x - x^3)$ $(-\infty < x < \infty)$.

△ а) Пользуясь правилами дифференцирования произведения и частного и таблицей производных, получаем

$$y'(x) = \frac{(x^2 \sin x)' \ln x - x^2 \sin x (\ln x)'}{\ln^2 x} =$$

$$= \frac{(x^2 \cos x + 2x \sin x) \ln x - x^2 \sin x \cdot 1/x}{\ln^2 x} =$$

$$= \frac{x(x \cos x + 2 \sin x) \ln x - x \sin x}{\ln^2 x} \quad (x > 0, \ x \neq 1).$$

б) Функцию $y = \cos(2^x - x^3)$ можно представить в виде $y = \cos t$, где $t = 2^x - x^3$. Пользуясь правилом дифференцирования сложной функции, получаем

$$y'(x) = (\cos t)'|_{t=2^x - x^3} (2^x - x^3)' =$$

$$= -\sin(2^x - x^3)(2^x \ln 2 - 3x^2) \quad (-\infty < x < \infty). \blacktriangle$$

Примеры:

Применяя правило дифференцирования сложной функции, найти производную функции y:

$$1) y = \sin^2 x;$$

2)
$$y = \ln(\arctan 3x)$$
.

 \bigcirc 1) Данная функция является композицией двух имеющих производные функций $u=\sin x$ и $f(u)=u^2$. Так как $u'=\cos x$, а f'(u)=2u, то с учетом правила дифференцирования сложной функции получим:

$$y'(x) = (u^2)'_x = 2u \cdot u' = 2\sin x \cdot \cos x = \sin 2x.$$

2) Функция $\ln(\arctan 3x)$ — композиция функций $u=\arctan 3x$ и $f(u)=\ln u$, откуда

$$y'(x) = (\ln u)'_x = \frac{1}{u} \cdot u' = \frac{1}{\arctan 3x} \cdot (\arctan 3x)'.$$

Функция $\arctan 3x$, в свою очередь, является композицией двух функций v=3x и $g(v)=\arctan v$, поэтому для нахождения ее производной нам придется еще раз применить правило дифференцирования сложной функции:

$$(\operatorname{arctg} 3x)' = (\operatorname{arctg} v)_x' = \frac{1}{1+v^2} \cdot v' = \frac{1}{1+(3x)^2} \cdot 3 = \frac{3}{1+9x^2}.$$

Отсюда окончательно

$$y' = \frac{1}{\arctan 3x} \cdot (\arctan 3x)' = \frac{3}{(1+9x^2)\arctan 3x}.$$

Примеры:

Используя логарифмическую производную, найти производные функций:

 $1) y = x^{\sin x};$

2)
$$y = \frac{(x-1)^3 \cdot \sqrt{x+2}}{\sqrt[3]{(x+1)^2}}$$
.

Q 1) Прологарифмируем обе части равенства $y = x^{\sin x}$. Тогда $\ln y = \ln x^{\sin x}$, т. е. $\ln y = \sin x \cdot \ln x$. Теперь продифференцируем последнее равенство, при этом в левой части используем производную сложной функции, а в правой — производную произведения: $(\ln y)' = (\sin x \cdot \ln x)'$, т. е. $\frac{y'}{y} = (\sin x)' \ln x + \sin x (\ln x)'$ или $\frac{y'}{y} = \cos x \cdot \ln x + \frac{\sin x}{x}$.

Отсюда $y' = y \left(\cos x \cdot \ln x + \frac{\sin x}{x}\right)$ или, учитывая, что $y = x^{\sin x}$,

$$y' = x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x}\right).$$

2) Непосредственное дифференцирование данной дроби привело бы к громоздким вычислениям, зато применение логарифмической производной позволяет найти ответ без труда:

$$\ln y = \ln \frac{(x-1)^3 (x+2)^{1/2}}{(x+1)^{2/3}}.$$

Отсюда, используя формулы для логарифма произведения, частного и степени, получим:

$$\ln y = \ln(x-1)^3 + \ln(x+2)^{1/2} - \ln(x+1)^{2/3},$$

т.е.

$$\ln y = 3\ln(x-1) + \frac{1}{2}\ln(x+2) - \frac{2}{3}\ln(x+1).$$

Осталось продифференцировать обе части полученного равенства:

$$(\ln y)' = \left[3\ln(x-1) + \frac{1}{2}\ln(x+2) - \frac{2}{3}\ln(x+1)\right]'$$

или

$$\frac{y'}{y} = \frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)},$$

откуда

$$y' = y \cdot \Big(\frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)}\Big),$$

т. е.

$$y' = \frac{(x-1)^3 \sqrt{x+2}}{\sqrt[3]{(x+1)^2}} \left(\frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)} \right).$$

Пример:

Найти производную y'(x) от следующей функции, заданной параметрически:

 $x = 2\cos t, \quad y = 3\sin t.$

 \bigcirc Производная функции y(x) находится по формуле $y'(x)=\frac{y'(t)}{x'(t)},$ откуда в нашем случае

$$y'(x) = \frac{(3\sin t)'}{(2\cos t)'} = -\frac{3\cos t}{2\sin t} = -1.5\operatorname{ctg} t.$$

Примеры:

Найти производные f' функций $f:x\mapsto y$, задаиных уравнениями:

53.
$$x^2 + 2xy - y^2 = 4x$$
.

 \blacktriangleleft Пусть y=f(x) — дифференцируемое решение данного уравнения. Тогда

$$x^{2} + 2xf(x) - (f(x))^{2} \equiv 4x \tag{1}$$

на некотором интервале. Поскольку все члены в тождестве (1) дифференцируемы, то из (1) после дифференцирования получаем

$$2x + 2f(x) + 2xf'(x) - 2f(x)f'(x) \equiv 4,$$

откуда

$$f'(x) = \frac{f(x) + x - 2}{f(x) - x}, \quad f(x) \neq x. \blacktriangleright$$

54.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$$
.

 \blacksquare Подставив в данное уравнение дифференцируемое решение y=f(x), получим тождество

$$x^{\frac{2}{3}} + (f(x))^{\frac{2}{3}} \equiv 1,$$

дифференцируя которос, имеем

$$x^{-\frac{1}{3}} + (f(x))^{-\frac{1}{3}}f'(x) \equiv 0.$$

Отсюда находим

$$f'(x) = -\left(\frac{f(x)}{x}\right)^{\frac{1}{3}}, \quad x \neq 0. \blacktriangleright$$

Пример:

Найти производную неявно заданной функции у:

$$x^3 + y^3 = \sin(x - 2y).$$

 \bigcirc Дифференцируя обе части уравнения и учитывая, что y — есть функция от x (поэтому, например, $(y^3)'_x = 3y^2 \cdot y'$), получим:

$$3x^2 + 3y^2 \cdot y' = \cos(x - 2y)(1 - 2y')$$

или

$$3x^2 + 3y^2 \cdot y' = \cos(x - 2y) - 2y' \cdot \cos(x - 2y).$$

Отсюда находим y':

$$3y^2y' + 2y' \cdot \cos(x - 2y) = \cos(x - 2y) - 3x^2$$

или

$$y'(3y^2 + 2\cos(x - 2y)) = \cos(x - 2y) - 3x^2,$$

т. е.

$$y' = \frac{\cos(x - 2y) - 3x^2}{3y^2 + 2\cos(x - 2y)}.$$

Пример:

3. Составить уравнение касательной к графику функции $y = \cos x$ в точке с абсциссой $x = \pi/6$.

 \triangle Имеем $x_0 = \pi/6$, $f(x_0) = \cos(\pi/6) = \sqrt{3}/2$, $f'(x_0) = -\sin(\pi/6) = -1/2$. Поэтому искомое уравнение касательной запишется в виде

$$y - \frac{\sqrt{3}}{2} = -\frac{1}{2} \left(x - \frac{\pi}{6} \right)$$
.

Пример:

Найти дифференциал функции

$$y=e^{x^3}.$$

 \bigcirc Так как dy = y'dx, то в данном случае $dy = (e^{x^3})'dx = 3x^2 \cdot e^{x^3}dx$.

Пример:

Найти приращение и дифференциал функции $y=x^2-3x+1$ в точке $x_0=2$, если $\Delta x=0,1$.

 \bigcirc Сначала найдем приращение Δy в общем виде:

$$\Delta y = y(x + \Delta x) - y(x) =$$

$$= [(x + \Delta x)^2 - 3(x + \Delta x) + 1] - (x^2 - 3x + 1) =$$

$$= x^2 + 2x\Delta x + (\Delta x)^2 - 3x - 3\Delta x + 1 - x^2 + 3x - 1 =$$

$$= 2x\Delta x - 3\Delta x + (\Delta x)^2 = (2x - 3)\Delta x + (\Delta x)^2.$$

Из полученного выражения для приращения Δy видно, что его линейная часть в произвольной точке x_0 равна $(2x_0-3)\Delta x$. Тогда по определению дифференциал данной функции будет равен $dy=(2x-3)\Delta x$, или, в более привычной записи, dy=(2x-3)dx.

Второе слагаемое в полученной записи для Δy , т. е. $(\Delta x)^2$, есть бесконечно малая более высокого порядка, чем первое слагаемое.

Заметим, что можно найти dy и сразу (без вычисления Δy) по формуле dy = y'dx, откуда $dy = (x^2 - 3x + 1)'dx = (2x - 3)dx$.

Теперь найдем Δy и dy в точке $x_0=2$, если $\Delta x=0,1$:

$$\Delta y = (2 \cdot 2 - 3) \cdot 0.1 + (0.1)^2 = 0.1 + 0.01 = 0.11, \quad dy = 0.1.$$

Примеры: Задачи на использование приближенной формулы:

$$f(x_0 + \Delta x) \cong f(x_0) + f'(x_0)\Delta x \tag{3}$$

3. Заменяя приращение функции ее дифференциалом, найти приближенное значение а) $\sqrt{0.98}$, б) $\sin 31^\circ$

 Δ а) Рассмотрим функцию $y(x)=\sqrt{1+x}$. Так как y(0)=1, $y(-0.02)=\sqrt{0.98},$ $y'(x)=\frac{1}{2}(1+x)^{-1/2},$ $y'(0)=\frac{1}{2},$ то по формуле (3) получаем

$$y(-0.02) \approx y(0) + y'(0)(-0.02) = 1 - 0.01 = 0.99.$$

Итак, $\sqrt{0.98} \approx 0.99$.

б) Рассмотрим функцию $y=\sin x$ Так как $y(30^\circ)=\sin 30^\circ=1/2$, $y'(30^\circ)=\cos 30^\circ=\sqrt{3}/2$, $1^\circ=2\pi/360$ (радиан) $\approx 0,0175$ (радиан), то по формуле (3), получаем

$$\sin 31^{\circ} \approx \frac{1}{2} + \frac{\sqrt{3}}{2} \quad \frac{2\pi}{360} \approx 0,5151. \ \blacktriangle$$

Примеры:

Вычислить приближенно:

1) $\ln 1,02$;

2) $\sqrt{24}$.

1) Воспользуемся приближенной формулой

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x.$$

Тогда, подставляя $f(x) = \ln x$, получим

$$\ln(x_0 + \Delta x) \approx \ln x_0 + \frac{1}{x_0} \cdot \Delta x.$$

Полагая здесь $x_0 = 1$, $\Delta x = 0.02$, найдем

$$\ln 1,02 \approx \ln 1 + \frac{1}{1} \cdot 0,02 = 0,02.$$

Таким образом, $\ln 1,02 \approx 0,02$.

2) Учитывая, что $f(x) = \sqrt{x}, x_0 = 25, \Delta x = -1,$ получим

$$\sqrt{x_0+\Delta x}pprox\sqrt{x_0}+rac{1}{2\sqrt{x_0}}\cdot\Delta x,$$
 т. е. $\sqrt{24}pprox\sqrt{25}+rac{1}{2\sqrt{25}}\cdot(-1)=4,9.$

Окончательно $\sqrt{24} \approx 4.9$.

Пример:

1. Найти $y^{(10)}$, если $y = x^2 e^{3x}$.

 Δ Данная функция является произведением двух функций: x^2 и e^{3x} . Применяя формулу Лейбница, получаем

$$(x^2e^{3x})^{(10)}=x^2(e^{3x})^{(10)}+C_{10}^1(x^2)'(e^{3x})^{(9)}+\\ +C_{10}^2(x^2)^{(2)}(e^{3x})^{(8)}+\ldots+(x^2)^{(10)}e^{3x}.$$
 Так как $(x^2)^{(n)}=0$ при $n\geqslant 3,\ (e^{3x})^{(k)}=e^{3x}3^k,$ то
$$(x^2e^{3x})^{(10)}=x^2e^{3x}3^{10}+10\cdot 2xe^{3x}3^9+45\cdot 2e^{3x}3^8=\\ =3^9e^{3x}(3x^2+20x+30).$$
 \blacktriangle

Рассмотренный пример показывает, что формулу Лейбница наиболее удобно применять в тех случаях, когда один из сомножителей является многочленом невысокой степени p. В этом случае все члены формулы Лейбница начиная с (p+2)-го равны нулю.

Пример:

68. $y = x \operatorname{sh} x$. Найти $y^{(100)}$.

 \blacktriangleleft Применяем формулу Лейбница, положив $u=x,\ v=\sh x$, и получаем

$$y^{(100)} = (x \operatorname{sh} x)^{(100)} = \sum_{k=0}^{100} C_{100}^{k}(x)^{(k)} (\operatorname{sh} x)^{(100-k)} = C_{100}^{0} x \operatorname{sh} x + C_{100}^{1} \operatorname{ch} x = x \operatorname{sh} x + 100 \operatorname{ch} x. \blacktriangleright$$